79 research outputs found

    SAR-Based Vibration Estimation Using the Discrete Fractional Fourier Transform

    Get PDF
    A vibration estimation method for synthetic aperture radar (SAR) is presented based on a novel application of the discrete fractional Fourier transform (DFRFT). Small vibrations of ground targets introduce phase modulation in the SAR returned signals. With standard preprocessing of the returned signals, followed by the application of the DFRFT, the time-varying accelerations, frequencies, and displacements associated with vibrating objects can be extracted by successively estimating the quasi-instantaneous chirp rate in the phase-modulated signal in each subaperture. The performance of the proposed method is investigated quantitatively, and the measurable vibration frequencies and displacements are determined. Simulation results show that the proposed method can successfully estimate a two-component vibration at practical signal-to-noise levels. Two airborne experiments were also conducted using the Lynx SAR system in conjunction with vibrating ground test targets. The experiments demonstrated the correct estimation of a 1-Hz vibration with an amplitude of 1.5 cm and a 5-Hz vibration with an amplitude of 1.5 mm

    Reduction of Vibration-Induced Artifacts in Synthetic Aperture Radar Imagery

    Get PDF
    Target vibrations introduce nonstationary phase modulation, which is termed the micro-Doppler effect, into returned synthetic aperture radar (SAR) signals. This causes artifacts, or ghost targets, which appear near vibrating targets in reconstructed SAR images. Recently, a vibration estimation method based on the discrete fractional Fourier transform (DFrFT) has been developed. This method is capable of estimating the instantaneous vibration accelerations and vibration frequencies. In this paper, a deghosting method for vibrating targets in SAR images is proposed. For single-component vibrations, this method first exploits the estimation results provided by the DFrFT-based vibration estimation method to reconstruct the instantaneous vibration displacements. A reference signal, whose phase is modulated by the estimated vibration displacements, is then synthesized to compensate for the vibration-induced phase modulation in returned SAR signals before forming the SAR image. The performance of the proposed method with respect to the signal-to-noise and signalto-clutter ratios is analyzed using simulations. Experimental results using the Lynx SAR system show a substantial reduction in ghosting caused by a 1.5-cm 0.8-Hz target vibration in a true SAR image

    Site-restricted web searches for data collection in regional dialectology

    Get PDF
    This article presents a new method for data collection in regional dialectology based on site-restricted web searches. The method measures the usage and determines the distribution of lexical variants across a region of interest using common web search engines, such as Google or Bing. The method involves estimating the proportions of the variants of a lexical alternation variable over a series of cities by counting the number of webpages that contain the variants on newspaper websites originating from these cities through site-restricted web searches. The method is evaluated by mapping the 26 variants of 10 lexical variables with known distributions in American English. In almost all cases, the maps based on site-restricted web searches align closely with traditional dialect maps based on data gathered through questionnaires, demonstrating the accuracy of this method for the observation of regional linguistic variation. However, unlike collecting dialect data using traditional methods, which is a relatively slow process, the use of site-restricted web searches allows for dialect data to be collected from across a region as large as the United States in a matter of days

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC) : a pragmatic, cluster randomised controlled trial

    Get PDF
    BACKGROUND: Mechanical chest compression devices have the potential to help maintain high-quality cardiopulmonary resuscitation (CPR), but despite their increasing use, little evidence exists for their effectiveness. We aimed to study whether the introduction of LUCAS-2 mechanical CPR into front-line emergency response vehicles would improve survival from out-of-hospital cardiac arrest. METHODS: The pre-hospital randomised assessment of a mechanical compression device in cardiac arrest (PARAMEDIC) trial was a pragmatic, cluster-randomised open-label trial including adults with non-traumatic, out-of-hospital cardiac arrest from four UK Ambulance Services (West Midlands, North East England, Wales, South Central). 91 urban and semi-urban ambulance stations were selected for participation. Clusters were ambulance service vehicles, which were randomly assigned (1:2) to LUCAS-2 or manual CPR. Patients received LUCAS-2 mechanical chest compression or manual chest compressions according to the first trial vehicle to arrive on scene. The primary outcome was survival at 30 days following cardiac arrest and was analysed by intention to treat. Ambulance dispatch staff and those collecting the primary outcome were masked to treatment allocation. Masking of the ambulance staff who delivered the interventions and reported initial response to treatment was not possible. The study is registered with Current Controlled Trials, number ISRCTN08233942. FINDINGS: We enrolled 4471 eligible patients (1652 assigned to the LUCAS-2 group, 2819 assigned to the control group) between April 15, 2010 and June 10, 2013. 985 (60%) patients in the LUCAS-2 group received mechanical chest compression, and 11 (<1%) patients in the control group received LUCAS-2. In the intention-to-treat analysis, 30 day survival was similar in the LUCAS-2 group (104 [6%] of 1652 patients) and in the manual CPR group (193 [7%] of 2819 patients; adjusted odds ratio [OR] 0·86, 95% CI 0·64-1·15). No serious adverse events were noted. Seven clinical adverse events were reported in the LUCAS-2 group (three patients with chest bruising, two with chest lacerations, and two with blood in mouth). 15 device incidents occurred during operational use. No adverse or serious adverse events were reported in the manual group. INTERPRETATION: We noted no evidence of improvement in 30 day survival with LUCAS-2 compared with manual compressions. On the basis of ours and other recent randomised trials, widespread adoption of mechanical CPR devices for routine use does not improve survival

    Fermi Large Area Telescope Constraints on the Gamma-ray Opacity of the Universe

    Get PDF
    The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results in a redshift- and energy-dependent attenuation of the gamma-ray flux of extragalactic sources such as blazars and Gamma-Ray Bursts (GRBs). The Large Area Telescope onboard Fermi detects a sample of gamma-ray blazars with redshift up to z~3, and GRBs with redshift up to z~4.3. Using photons above 10 GeV collected by Fermi over more than one year of observations for these sources, we investigate the effect of gamma-ray flux attenuation by the EBL. We place upper limits on the gamma-ray opacity of the Universe at various energies and redshifts, and compare this with predictions from well-known EBL models. We find that an EBL intensity in the optical-ultraviolet wavelengths as great as predicted by the "baseline" model of Stecker et al. (2006) can be ruled out with high confidence.Comment: 42 pages, 12 figures, accepted version (24 Aug.2010) for publication in ApJ; Contact authors: A. Bouvier, A. Chen, S. Raino, S. Razzaque, A. Reimer, L.C. Reye

    Trapping virtual pores by crystal retro-engineering

    Get PDF
    Stable guest-free porous molecular crystals are uncommon. By contrast, organic molecular crystals with guest-occupied cavities are frequently observed, but these cavities tend to be unstable and collapse on removal of the guests—this feature has been referred to as ‘virtual porosity’. Here, we show how we have trapped the virtual porosity in an unstable low-density organic molecular crystal by introducing a second molecule that matches the size and shape of the unstable voids. We call this strategy ‘retro-engineering’ because it parallels organic retrosynthetic analysis, and it allows the metastable two-dimensional hexagonal pore structure in an organic solvate to be trapped in a binary cocrystal. Unlike the crystal with virtual porosity, the cocrystal material remains single crystalline and porous after removal of guests by heating

    The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products

    Get PDF
    Glaciers and their changes through time are increasingly obtained from a wide range of satellite sensors. Due to the often remote location of glaciers in inaccessible and high-mountain terrain, satellite observations frequently provide the only available measurements. Furthermore, satellite data provide observations of glacier character- istics that are difficult to monitor using ground-based measurements, thus complementing the latter. In the Glaciers_cci project of the European Space Agency (ESA), three of these characteristics are investigated in detail: glacier area, elevation change and surface velocity. We use (a) data from optical sensors to derive glacier outlines, (b) digital elevation models from at least two points in time, (c) repeat altimetry for determining elevation changes, and (d) data from repeat optical and microwave sensors for calculating surface velocity. For the latter, the two sensor types provide complementary information in terms of spatio-temporal coverage. While (c) and (d) can be generated mostly automatically, (a) and (b) require the intervention of an analyst. Largely based on the results of various round robin experiments (multi-analyst benchmark studies) for each of the products, we suggest and describe the most suitable algorithms for product creation and provide recommendations concerning their practical implementation and the required post-processing. For some of the products (area, velocity) post-processing can influence product quality more than the main-processing algorithm
    • 

    corecore